Applying of Hierarchical Clustering to Analysis of Protein Patterns in the Human Cancer-Associated Liver
نویسندگان
چکیده
BACKGROUND There are two ways that statistical methods can learn from biomedical data. One way is to learn classifiers to identify diseases and to predict outcomes using the training dataset with established diagnosis for each sample. When the training dataset is not available the task can be to mine for presence of meaningful groups (clusters) of samples and to explore underlying data structure (unsupervised learning). RESULTS We investigated the proteomic profiles of the cytosolic fraction of human liver samples using two-dimensional electrophoresis (2DE). Samples were resected upon surgical treatment of hepatic metastases in colorectal cancer. Unsupervised hierarchical clustering of 2DE gel images (n = 18) revealed a pair of clusters, containing 11 and 7 samples. Previously we used the same specimens to measure biochemical profiles based on cytochrome P450-dependent enzymatic activities and also found that samples were clearly divided into two well-separated groups by cluster analysis. It turned out that groups by enzyme activity almost perfectly match to the groups identified from proteomic data. Of the 271 reproducible spots on our 2DE gels, we selected 15 to distinguish the human liver cytosolic clusters. Using MALDI-TOF peptide mass fingerprinting, we identified 12 proteins for the selected spots, including known cancer-associated species. CONCLUSIONS/SIGNIFICANCE Our results highlight the importance of hierarchical cluster analysis of proteomic data, and showed concordance between results of biochemical and proteomic approaches. Grouping of the human liver samples and/or patients into differing clusters may provide insights into possible molecular mechanism of drug metabolism and creates a rationale for personalized treatment.
منابع مشابه
Is Dietary Pattern Associated with Gastric Cancer Risk? A Case-control Study in Iran
Background: Diet is considered as an important contributor to the development of the cancers. In the present study, the association of dietary patterns with gastric cancer risk was studied. Methods: In the present case-control study, 192 newly diagnosed gastric cancer patients and 365 subjects as control group were included. The participants in each group underwent face-to-face interview. For ...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملAnalyzing Motorcycle Crash Pattern and Riders’ Fault Status at a National Level: A Case Study from Iran
Motorcycle crashes constitute a significant proportion of traffic accidents all over the world. The aim of this paper was to examine the motorcycle crash patterns and rider fault status across the provinces of Iran. For this purpose, 6638 motorcycle crashes occurred in Iran through 2009-2012 were used as the analysis data and a two-step clustering approach was adopted as the analysis framework....
متن کاملمقایسه نتایج خوشهبندی سلسله مراتبی و غیرسلسله مراتبی پروتئینهای مرتبط با سرطانهای مری، معده و کلون براساس تشابهات تفسیر هستیشناسی ژنی
Background and Objective: Using proteomic methodologies and advent of high-throughput (HTP) investigation of proteins has created a need for new approaches in bioinformatics analysis of experimental results. Cluster analysis is a suitable statistical procedure that can be useful for analyzing these data sets. Materials and Methods: In this research study, the identified proteins associated wi...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014